CHAPTER 1II

The First Law of Thermodynamics

3. The statement of the first law of thermodynamics.
The first law of thermodynamics is essentially the statement
>f the principle of the conservation of energy for thermo-
iynamical systems. Assuch, it may be expressed by stating
that the variation in energy of a system during any trans-
formation is equal to the amount of energy that the system
receives from its environment. In order to give a precise
meaning to this statement, it is necessary to define the
phrases ‘“energy of the system” and “energy that the
system receives from its environment during a transfor-
mation.”

In purely mechanical conservative systems, the energy is
equal to the sum of the potential and the kinetic energies,
and hence is a function of the dynamical state of the system;
because to know the dynamical state of the system is
equivalent to knowing the positions and velocities of all the
mass-points contained in the system. If no external forces
are acting on the system, the energy remains constant.
Thus, if A and B are two successive states of an isolated
system, and U4 and Up are the corresponding energies, then

l.[A = (]B.

When external forces act on the system, U, need no
longer be equal to Us. If — L isthe work performed by the
external forces during a transformation from the initial
state A to the final state B (+L is the work performed by
the system), then the dynamical principle of the conserva-
tion of energy takes the form:

(,/3 -_ (JA = -—L. (11)
From this equation it follows that the work, L, performed

during the transformation depends only on the extreme
11



12 THE FIRST LAW OF THERMODYNAMICS

states A and B of the transformation and not on the par-
ticular way in which the transformation from A to B is
performed.

Let us assume now that we do not know the laws of
interaction among the various mass-points of our dynamical
system. Then we cannot calculate the energy of the system
when it is in a given dynamical state. By making use of
equation (11), however, we can mnevertheless obtain an
empirical definition of the energy of our system in the
following way:

We consider an arbitrarily chosen state O of our system
and, by definition, take its energy to be zero:

Uo = 0. (12)

We shall henceforth refer to this state as the standard state
of our system. Consider now any other state A ; by apply-
ing suitable external forces to our system, we can transform
it from the standard state (in which we assume it to be
initially) to the state A. ILet L, be the work performed by
the system during this transformation (—L, is, as before,
the work performed by the external forces on the system).

Applying (11) to this transformation, and remembering (12),
we find that

Ui = —Ly4. (13)

This equation can be used as the empirical definition of the
energy U, of our system in the state 4.

It is obviously necessary, if definition (13) is to have a
meaning, that the work L, depend only on the states O and
A and not on the special way in which the transformation
from O to A is performed. We have already noticed that
this property follows from (11). If one found experi-
mentally that this property did not hold, it would mean
either that energy is not conserved in our system, or that,

besides mechanical work, other means of transfer of energy
must be taken into account.
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We shall assume for the present that the work performed
by our mechanical system during any transformation
depends only on the initial and final states of the trans-
formation, so that we can use (13) as the definition of the
energy.

We can immediately obtain (11) from (13) as follows: A
transformation between any two states A and B can always
be performed as a succession of two transformations: first a
transformation from A to the standard state O, and then a
transformation from O to B. Since the system performs
the amounts of work —L, and +Lp during these two
transformations, the total amount of work performed
during the transformation from A to B (which is independent

of the particular way in which the transformation is per-
formed) is:

L = —L,+ Ls.
From (13) and the analogous equation,
Ug = —Lsg,
we obtain now:
Usg — Uy = —L,

which is identical with (11).

We notice, finally, that the definition (13) of the energy is
not quite unique, since it depends on the particular choice
of the standard state O. If instead of O we had chosen a
different standard state, O’, we should have obtained a
different value, U, for the energy of the state A. It
can be easily shown, however, that U', and 77, differ only
by an additive constant. Indeed, the transformation from
O’ to A can be put equal to the sum of two transformations:
one going from O’ to O and the other going from O to A.

The work L/, performed by the system in passing from O’ to
A is thus equal to:

L; = LO'() + L.‘l;
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where Lo.o is the work performed by the system in going
from O’ to O. We have now:

Us = —Lg; U:a = —'L;,
so that
U.A - U; = Lo'o,

which shows that the values of the energy based on the two
definitions differ only by the constant Lo.o.

This indeterminate additive constant which appears in the
definition of the energy is, as is well known, an essential
feature of the concept of energy. Since, however, only
differences of energy are considered in practice, the additive
constant does not appear in the final results.

The only assumption underlying the above empirical
definition of the energy is that the total amount of work
performed by the system during any transformation depends
only on the initial and final states of the transformation.
We have already noticed that if this assumption is contra-
dicted by experiment, and if we still do not wish to discard
the principle of the conservation of energy, then we must
admit the existence of other methods, besides mechanical
work, by means of which energy can be exchanged between
the system and its environment.

Let us take, for example, a system composed of a quantity
of water. We consider two states A and B of this system at
atmospheric pressure; let the temperatures of the system in
these two states be {, and ¢z, respectively, with {, < iz.
We can take our system from A to B in two different ways.

First way: We heat the water by placing it over a flame
and raise its temperature from the initial value {, to the
final wvalue ¢;. The external work performed by the
system during this transformation is practically zero. It
would be exactly zero if the change in temperature were not
accompanied by a change in volume of the water. Ac-
tually, however, the volume of the water changes slightly
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during the transformation, so that a small amount of work is
performed (see equation (3)). We shall neglect this small
amount of work in our considerations.

Second way: We raise the temperature of the water from
t, to tz by heating it by means of friction. To this end, we
immerse a small set of paddles attached to a central axle in
the water, and churn the water by rotating the paddles.
We observe that the temperature of the water increases
continuously as long as the paddles continue to rotate.
Since the water offers resistance to the motion of the paddles,
however, we must perform mechanical work in order to
keep the paddles moving until the final temperature ¢z is
reached. Corresponding to this considerable amount of
positive work performed by the paddles on the water, there
is an equal amount of negative work performed by the water
in resisting the motion of the paddles.

We thus see that the work performed by the system in
going from the state A to the state B depends on whether
we go by means of the first way or by means of the second
way.

If we assume that the principle of the conservation of
energy holds for our system, then we must admit that the
energy that is transmitted to the water in the form of the
mechanical work of the rotating paddles in the second way
is transmitted to the water in the first way in a nonmechani-
cal form called heat. We are thus led to the fact that heat
and mechanical work are equivalent; they are two different
aspects of the same thing, namely, energy. In what follows
we shall group under the name of work electrical and
magnetic work as well as mechanical work. The first two
types of work, however, are only seldom considered in
thermodynamics.

In order to express in a more precise form the fact that
heat and work are equivalent, we proceed as follows.

We first enclose our system in a container with non-heat-
conducting walls in order to prevent exchange of heat with
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the environment.! We assume, however, that work can be
exchanged between the system and its environment (for
example, by enclosing the system in a cylinder with non-
conducting walls but with a movable piston at one end).
The exchange of energy between the inside and the outside
of the container can now occur only in the form of work, and
from the principle of the conservation of energy it follows
that the amount of work performed by the system during
any transformation depends only on the initial and the
final states of the transformation.2

We can now use the empirical definition (13) of the energy
and define the energy U as a function of the state of the
system only.? Denoting by AU = Uz — U, the variation
in the energy of our system that occurs during a transfor-
mation from the state A to the state B, we can write
equation (11), which is applicable to our thermally insulated
system, in the form:

AU + L = 0. (14)

If our system is not thermally insulated, the left-hand side
of (14) will in general be different from zero because there
can then take place an exchange of energy in the form of

1 We need only mention here that no perfect thermal insulators exist.
Thermal insulation can be obtained approximately, however, by means of
the well-known methods of Calortmetry.

? It would be formally more exact, although rather abstract, to state the
content of the preceding sentences as follows:

Experiments show that there exist certain substances called thermal
insulators having the following properties: when a system is completely
enclosed in a thermal insulator in such a way that work can be exchanged
between the inside and the outside, the amount of work performed by the
system during a given transformation depends only on the initial and final
states of the transformation.

® It should be noticed here that if definition (13) of the energy of a state
A of our system is to be applicable, it must be possible to transform the
system from the standard state O to the state A while the system is ther-
mally insulated. We shall show later (see section 13) that such a trans-
formation is not always possible without an exchange of heat. In such
cases, however, the opposite transformation A — O can always be per-
formed. The work performed by the system during this reverse transfor-
mation is —L4 ; we can therefore apply (13) to such cases also.
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heat. We shall therefore replace (14) by the more general
equation:

AU + L = @, (15)

where @ is equal to zero for transformations performed on
thermally insulated systems and otherwise, in general, is
different from zero.

Q can be interpreted physically as the amount of energy
that is received by the system in forms other than work.
This follows immediately from the fact that the variation
in energy, AU, of the system must be equal to the total

amount of energy received by the system from its environ-
ment. But from (15)

AU = —L + @,

and — L is the energy received in the form of work. Hence,
Q stands for the energy received in all other forms.

By definition, we shall now call @ the amount of heat
received by the system during the transformation.

For a cyclic transformation, equation (15) takes on a very
simple form. Since the initial and final states of a cycle are

the same, the variation in energy is zero: AU = 0. Thus,
(15) becomes:

L = Q. (16)

That is, the work performed by a system during a cyclic
transformation is equal to the heat absorbed by the system.

It is important at this point to establish the connection
between this abstract definition of heat and its elementary
calorimetric definition. The calorimetric unit of heat, the
calorie, is defined as the quantity of heat required to raise
the temperature of one gram of water at atmospheric
pressure from 14°C to 15°C. Thus, to raise the temperature
of m grams of water from 14°C to 15°C at atmospheric
pressure, we require m calories of heat. Let Au, denote the
variation in enecrgy of one gram of water, and l. the work
done as a result of its expansion when its temperature is
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raised from 14°C to 15°C at atmospheric pressure. For m
grams of water, the variation in energy and the work done
are:

AU: = mAu,; L. = ml.. (17)

We now consider a system S which undergoes a, transfor-
mation. In order to measure the heat exchanged between
the system and the surrounding bodies, we place the system
in contact with a calorimeter containing m grams of water,
initially at 14°C. We choose the mass of the water in such a
way that after the transformation has been completed, the
temperature of the water is 15°C.

Since an ideal calorimeter is perfectly insulated thermally,
the complex system composed of the systemn S and the
calorimetric water is thermally insulated during the trans-
formation. We may therefore apply equation (14) to this
transformation. The total variation in energy is equal
to the sum:

AU = AUS + AUc,

where AU, is the variation in energy of the system S, and
AU, is the variation in energy of the calorimetric water.
Similarly, for the total work done, we have:.

L = Ls + L..
From (14) we have, then,
AUs + AU, + Ls + L. = 0;
or, by (17),
AUs + Ls = — (AU, + L.)
= —m(Au. + 1.).

But from the definition (15), AUy, + Lg is the amount of
heat Qs received by the system S. Thus, we have:

Qs = —m(Au, + 1.). (18)
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We see from this that the amount of heat is proportional
to m.

On the other hand, in calorimetry the fact that m grams of
calorimetric water have been heated from 14°C to 15°C
means that m calories of heat have been transferred from
the system S to the calorimeter; that is, that the system S
has received —m calories, or that Qs, expressed in calories,
is equal to —m. We see also, by comparison with (18),
that the amount of heat, as given by the definition (15), is
proportional to the amount when it is expressed in calories;
the constant of proportionality is (Au. + 1.).

According to (15), heat is measured in energy units (ergs).
The constant ratio between ergs and calories has been
measured by many investigators, who have found that

1 calorie = 4.185 X 10’ ergs. (19)

In what follows we shall generally express heat measure-
ments in energy units.

Equation (15), which is a precise formulation of the
equivalence of heat and work, expresses the first law of
thermodynamics.

4. The application of the first law to systems whose
states can be represented on a (V, p) diagram. We shall
now apply the first law of thermodynamics to a system,
such as a homogeneous fluid, whose state can be defined in
terms of any two of the three variables V, p, and T. Any
function of the state of the system, as, for example, its
energy, U, will then be a function of the two wvariables
which have been chosen to represent the state.

In order to avoid any misunderstanding as to which are
the independent wvariables when it is necessary to differ-
entiate partially, we shall enclose the partial derivative
symbol in a parenthesis and place the wvariable that is to
be held constant in the partial differentiation at the foot

aU

of the parenthesis. Thus, <5§,—) means the derivative of
|4
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U with respect to T, keeping V constant, when 7' and V
are taken as the independent variables. Notice that the

. . aU
above expression is in general different from (a_f) , because
P

in the first case the volume is kept constant while in the
second case the pressure is kept constant.

We now consider an infinitesimal transformation of our
system, that is, a transformation for which the independent
variables change only by infinitesimal amounts. We apply
to this transformation the first law of thermodynamics as
expressed by equation (15). Instead of AU, L, and Q, we
must now write dU, dL, and dQ, in order to point out the
infinitesimal nature of these quantities. We obtain, then,

dU + dL = dQ. (20)
Since for our system, dL is given by (3), we have:
dU + pdV = dQ. (21)

If we choose T and V as our independent variables, U
becomes a function of these variables, so that:

1% 14
aUu = (ﬁ)vdT + (W

and (21) becomes:

(20),ar +[(D) v v —de. @2

Similarly, taking 7" and p as independent variables, we have:

[G2), +#(7). Jor + [ (), + (). ] = 0.

Finally, taking V and p as independent variables, we obtain:

oU oU
(D s [ ool -0 o

The thermal capacity of a body is, by definition, the ratio,
dQ/dT, of the infinitesimal amount of heat dQ absorbed by
the body to the infinitesimal increase in temperature d7
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produced by this heat. In general, the thermal capacity
of a body will be different according as to whether the body
is heated at constant volume or at constant pressure.
Let Cy and C, be the thermal capacities at constant volume
and at constant pressure, respectively.

A simple expression for C, can be obtained from (22).

For an infinitesimal transformation at constant wvolume,
dV = 0; hence,

_(dQ\ _ [8U
ov = (3), - (G2, (25)
Similarly, using (23), we obtain the following expression
for C, :
_(dQ\ _ (aU 14
Cr = (&?l") = (a“:r) + p(b‘?ﬁ . (26)

The second term on the right-hand side represents the
effect on the thermal capacity of the work performed during
the expansion. An analogous term is not present in (25),
because in that case the volume is kept constant so that no
expansion occurs.

The thermal capacity of one gram of a substance is called
the specific heat of that substance; and the thermal capacity
of one mole is called the molecular heat. The specific and
molecular heats at constant volume and at constant pressure
are given by the formulae (25) and (26) if, instead of taking
an arbitrary amount of substance, we take one gram or
one mole of the substance, respectively.

5. The application of the first law to gases. In the case
of a gas, we can express the dependence of the energy on the
state variables explicitly. We choose 7" and V as the
independent variables, and prove first that the energy is a
function of the temperature 7' only and does not depend
on the volume V. This, like many other properties of
gases, is only approximately true for real gases and is
assumed to hold exactly for ideal gases. In section 14 we
shall deduce from the second law of thermodynamics the



22 THE FIRST LAW OF THERMODYNAMICS

result that the energy of any body which obeys the equation
of state, (7), of an ideal gas must be independent of the
volume V. At this point, however, we shall give an experi-
mental proof of this proposition for a gas; the experiment
was performed by Joule.

Into a calorimeter Joule placed a container having two
chambers, A and B, connected by a tube (Figure 5). He
filled the chamber A with a gas and evacuated B, the two
chambers having first been shut off from each other by a
stopcock in the connecting tube. After thermal equilibrium
had set in, as indicated by a thermometer placed within the
calorimeter, Joule opened the stopcock, thus permitting
the gas to flow from A into B until the pressure everywhere
| in the container was the same.
He then observed that there was
only a very slight change in the
reading of the thermometer.
This meant that there had been
practically mno transfer of heat
ol J— ——| from the calorimeter to the cham-
S _——=-=_=—=-=-=| ber or vice versa. It is assumed
—  that if this experiment could be

performed with an ideal gas,
there would be no temperature change at all.

We now apply the first law to the above transformation.

|
|
|

—_— —
- ——
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#

Since @ = 0, we have from equation (15) for the system
composed of the two chambers and the enclosed gas:
AU + L = 0,

where L is the work performed by the system and AU is the
variation in energy of the system. Since the volumes of the
two chambers A and B composing our system do not change
during the experiment, our system can perform no external
work, that is, L = 0. Therefore,

AU = 0;

the energy of the system, and, hence, the energy of the gas,
do not change.
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Let us now consider the process as a whole. Initially
the gas occupied the volume A4, and at the end of the process
it filled the two chambers A and B; that is, the transforma-
tion resulted in a change in volume of the gas. The experi-
ment showed, however, that there was no resultant change
in the temperature of the gas. Since there was no variation
in energy during the process, we must conclude that a
variation in volume at constant temperature produces no
variation in energy. In other words, the energy of an ideal
gas s a funciion of the temperature only and not a function of
the volume. We may therefore write for the energy of an
ideal gas:

U = U(T). 27

In order to determine the form of this function, we make use
of the experimental result that the specific heat at constant
volume of a gas depends only slightly on the temperature;
we shall assume that for an ideal gas the specific heat is
exactly constant. In this section we shall always refer to
one mole of gas; Cy and C, will therefore denote the molecu-
lar heats at constant volume and at constant pressure,
respectively.

Since U depends only on 7', it is not necessary to specify
that the volume is to be kept constant in the derivative in
(25); so that, for an ideal gas, we may write:

au

Cy = ar- (28)

Since Cy is assumed to be constant, we can integrate at once,
and we get :

where W is a constant of integration which represents the
energy left in the gas at absolute zero temperature.4

4 This additive constant affects the final results of the calculations only
when chemical transformations or changes of the states of aggregation
of the substances are involved. (See, for example, Chapter VI.) In all
other cases, one may place the additive constant equal to zero.
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For an ideal gas, equation (21), which expresses the first
law of thermodynamics for infinitesimal transformations,
takes on the form:

CydT + pdV = dQ. (30)

Differentiating the characteristic equation (7) for one mole
of an ideal gas, we obtain:

pdV + Vdp = RdT. (31)
Substituting this in (30), we find:
(Cy + R)AT — Vdp = dQ. (32)
Since dp = O for a transformation at constant pressure,
this equation gives us:
C,,=(g%1 p=Cv+R. (33)

That is, the difference between the molecular heats of a gas
at constant pressure and at constant volume is equal to the
gas constant R.

The same result may also be obtained from (26), (29), and
(7). Indeed, for an ideal gas we have from (29) and (7):

(&) % e (%) - (HE) -
8T /), 4T ~ ™ aT aT p "
Substituting these expressions in (26), we again obtam (33).

It can be shown by an application of kinetic theory that:

Cy = £ R for a monatomic gas; and
Cy = § R for a diatomic gas. (34)

Assuming these values, which are in good agreement with
experiment, we deduce from (33) that:

C, = § R for a monatomic gas; and
Cp = % R for a diatomic gas. (35)
If we place

= C, =14 Cy’ (36)
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we also obtain:

K
K

6. Adiabatic transformations of a gas. A transformation
of a thermodynamical system is said to be adiabatic if it is
reversible and if the system is thermally insulated so that no
heat can be exchanged between it and its environment
during the transformation.

We can expand or compress a gas adiabatically by enclos-
ing it in a cylinder with non-heat-conducting walls and
piston, and shifting the piston outward or inward very
slowly. If we permit a gas to expand adiabatically, it does
external work, so that L in equation (15) is positive. Since
the gas is thermally insulated, @ = 0, and, hence, AU must
be negative. That is, the energy of a gas decreases during
an adiabatic expansion. Since the energy is related to the
temperature through equation (29), a decrease in energy
means a decrease in the temperature of the gas also.

In order to obtain a quantitative relationship between
the change in temperature and the change in volume
resulting from an adiabatic expansion of a gas, we observe
that, since dQ = 0, equation (30) becomes:

CvdT + pdV = 0.

3 for a monatomic gas; and
% for a diatomic gas. (37)

Using the equation of state, pV = RT, we can eliminate p
from the above equation and obtain:

CvdT + EZ’dV = 0,
vV
or
aT R dV
TV v =%
Integration yields:

log T g—’ log V = constant.
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Changing from logarithims to numbers, we get:
R
TV°¥ — constant.

Making use of (36), we can write the preceding equation
in the form:

TVE™ = constant. (38)

This equation tells us quantitatively how an adiabatic
change in the volume of an ideal gas determines the change
in its temperature. If, for example, we expand a diatomic
gas adiabatically to twice its initial volume, we find from
(38) (assuming, according to (37), that KX = %) that the
temperature is reduced in the ratio 1:2%* =1: 1.32.

Using the equation of state, pV = RT, we can put equa-
tion (38) of an adiabatic transformation in the following
forms:

pVx = constant. (39)
3: r = constant. (40)
K

p

Equation (39) is to be compared with the equation,
PV = constant,

of an isothermal transformation. On the (V, p) diagram,
the isothermals are a family of equilateral hyperbolae; the
adiabatic lines represented by equation (39), are qualita-
tively similar to hyperbolae, but they are steeper because
K > 1.

Isothermal and adiabatic curves are represented 1in
Figure 6, the former by the solid lines and the latter by the
dotted lines.

An interesting and simple application of the adiabatic
expansion of a gas is the calculation of the dependence of the
temperature of the atmosphere on the height above seas
level. The principal reason for this variation of tempera-
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ture with height above sea level is that there are convection
currents in the troposphere which continually transport
air from the lower regions to the higher ones and from the
higher regions to the lower ones. When air from sea level
rises to the upper regions of lower pressure, it expands.
Since air is a poor conductor of heat, very little heat is
transferred to or from the expanding air, so that we may
consider the expansion as taking place adiabatically.
Consequently, the temperature of the rising air decreases.
On the other hand, air from the upper regions of the atmos-
phere suffers an adiabatic compression, and hence an
increase in temperature, when it sinks to low regions.

In order to calculate the
change in temperature, we
consider a column of air of unit
cross section, and focus our
attention on a slab, of height
dh, having its lower face at a
distance h above sea level. If
p is the pressure on the lower
face, then the pressure on the
upper face will be p 4+ dp,
where dp is the change in pres-
sure which is due to the weight
of the air contained in the slab. If g is the acceleration of
gravity and p is the density of the air, then the weight of the
air in the slab is pgdh. Since an increase in height is
followed by a decrease in pressure, we have:

Fig. 6.

dp = — pgdh; (41)
or, remembering (8),

where M is the average molecular weight of air; M = 28.88.
The logarithmic derivative of (40) gives us:
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dT K — 1dp

T ~ K »p
This, together with the previous equation, gives:
arT K —1gM
#- K K (42)

Assuming
K=2%; g=980665 M = 28.88; R = 8.214 X 107,
we obtain:

ar

—5
T 9.8 X 107 degrees/cm.

= — 9.8 degrees/kilometer.

This value is actually somewhat larger than the observed
average decrease of temperature with altitude. The dif-
ference is mainly owing to our having neglected the effect

of condensation of water vapor in the expanding masses
of air.

Problems

1. Calculate the energy variation of a system which performs
3.4 X 10% ergs of work and absorbs 32 calories of heat.

2. How many calories are absorbed by 3 moles of an ideal gas
expanding isothermally from the initial pressure of 5 atmospheres
to the final pressure of 3 atmospheres, at the temperature of 0°C?

3. One mole of a diatomic ideal gas performs a transformation
from an initial state for which temperature and volume are,
respectively, 291°K and 21,000 cc. to a final state in which
temperature and volume are 305°K and 12,700 cc. The trans-
formation is represented on the (V, p) diagram by a straight line.
To find the work performed and the heat absorbed by the system.

4. A diatomic gas expands adiabatically to a volume 1.35
times larger than the initial volume. The initial temperature is
18°C. Find the final temperature.



