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Preface

THIS book originated in a course of lectures held at
Columbia University, New York, during the summer
session of 1936.

It 1s an elementary treatise throughout, based entirely on
pure thermodynamics; however, it is assumed that the
reader 8 familiar with the fundamental facts of ther-
mometry and calorimetry. Here and there will be found
short references to the statistical interpretation of thermo-
dynamics.

As & guide in writing this book, the author used notes of
his lectures that were taken by Dr. Lloyd Motz of Columbia
University, who also revised the final manuseript eritically.
Thanks are due him for his willing and intelligent col-
laboration.

E. Fermi
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Introduction

HERMODYNAMICS is mainly concerned with the
transformations of heat into mechanical work and the
opposite transformations of mechanical work into heat.

Only in comparatively recent times have physicists recog-
nized that heat is a form of energy that can be changed into
other forms of energy. Formerly, scientists had thought
that heat was some sort of fluid whose total amount was
invariable, and had simply interpreted the heating of a body
and analogous processes as consisting of the transfer of this
fluid from one body to another. Itis, therefore, noteworthy
that on the basis of this heat-fluid theory Carnot was able,
in the year 1824, to arrive at a comparatively clear under-
standing of the limitations involved in the transformation of
heat into work, that is, of essentially what is now called the
second law of thermodynamics (see Chapter III).

In 1842, only eighteen years later, R. J. Mayer discovered
the equivalence of heat and mechanical work, and made the
first announcement of the principle of the conservation of
energy (the first law of thermodynamics).

We know today that the actual basis for the equivalence
of heat and dynamical energy is to be sought in the kinetic
interpretation, which reduces all thermal phenomena to the
disordered motions of atoms and molecules. From this
point of view, the study of heat must be considered as a
special branch of mechanics: the mechanics of an ensemble
of such an enormous number of particles (atoms or mole-
cules) that the detailed description of the state and the
motion loses importance and only average properties of large
numbers of particles are to be considered. This branch of
mechanics, called statistical mechanics, which has been de-
veloped mainly through the work of Maxwell, Boltzmann,
and Gibbs, has led to a very satisfactory understanding of
the fundamental thermodynamical laws.
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X INTRODUCTION

But the approach in pure thermodynamics is different.
Here the fundamental laws are assumed as postulates based
on experimental evidence, and conclusions are drawn from
them without entering into the kinetic mechanism of the
phenomena. This procedure has the advantage of being
independent, to & great extent, of the simplifying assump-
tions that are often made in statistical mechanical considera-
tions. Thus, thermodynamical results are generally highly
accurate. On the other hand, it is sometimes rather un-
satisfactory to obtain results without being able to see in
detail how things really work, so that in many respects it is
very often convenient to complete 4 thermodynamical result
with at least a rough kinetic interpretation.

The first and second laws of thermodynamics have their
statistical foundation in classical mechanics. In recent
years Nernst has added a third law which can be inter-
preted statistically only in terms of quantum mechanical
concepts. The last chapter of this book will concern itself
with the consequences of the third law,



CHAPTER 1

Thermodynamic Systems

1. The state of a system and its transformations. The
state of a system in mechanics is completely specified at a
given instant of time if the position and velocity of each mass-
point of the system are given. For a system composed of a
number N of mass-points, this requires the knowledge of
6N variables.

In thermodynamics a different and much simpler concept
of the state of a system is introduced. Indeed, to use the
dynamical definition of state would be inconvenient, because
all the systems which are dealt with in thermodynamics
contain a very large number of mass-points (the atoms or
molecules), so that it would be practically impossible to
specify the 6N variables. Moreover, it would be unneces-
sary to do so, because the quantities that are dealt with in
thermodynamics are average properties of the system;
consequently, a detailed knowledge of the motion of each
mass-point would be superfluous.

In order to explain the thermodynamic concept of the
state of a system, we shall first discuss a few simple examples.

A system composed of a chemically defined homogeneous
fluid. We can make the following measurements on such a
system: the temperature ¢, the volume V, and the pressure p.
The temperature can be measured by placing a thermometer
in contact with the system for an interval of time sufficient
for thermal equilibrium to set in. As is well known, the
temperature defined by any special thermometer (for
example, a mercury thermometer) depends on the particular
properties of the thermometric substance used. For the
time being, we shall agree to use the same kind of thermom-
eter for all temperature measurements in order that these
may all be comparable.

1



2 THERMODYNAMIC SYSTEMS

The geometry of our system is obviously characterized
not only by its volume, but also by its shape. However,
most thermodynamical properties are largely independent
of the shape, and, therefore, the volume is the only geometri-
cal datum that is ordinarily given. It is only in the cases
for which the ratio of surface to volume is very large (for
example, a finely grained substance) that the surface must
also be considered.

For a given amount of the substance contained in the
system, the temperature, volume, and pressure are not

independent quantities; they are connected by a relationship
of the general form:

f(p7 V: ) = 0) (1)

which is called the equaiion of state. Its form depends on
the special properties of the substance. Any one of the
three variables in the above relationship can be expressed
as a function of the other two by solving equation (1) with
respect to the given variable. Therefore, the state of the
system is completely determined by any two of the three
quantities, p, V, and &.

It is very often convenient to represent these two quanti-
ties graphically in a rectangular system of co-ordinates.
For example, we may use a (V, p) representation, plotting V
along the abscissae axis and p along the ordinates axis. A
point on the (V, p) plane thus defines a state of the system.
The points representing states of equal temperature lie
on a curve which is called an zsothermal.

A system composed of a chemically defined homogeneous
solid. In this case, besides the temperature ¢ and volume
V, we may introduce the pressures acting in different
directions in order to define the state. In most cases,
however, the assumption is made that the solid is subjected
to an isotropic pressure, so that only one wvalue for the
pressure need be considered, as in the case of a fluid.

A system composed of a homogeneous mrxture of several
chemzical compounds. In this case the variables defining the
state of the system are not only temperature, volume, and
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pressure, but also the concentrations of the different chemical
compounds composing the mixture.

Nonhomogeneous systems. In order to define the state of a
nonhomogeneous system, one must be able to divide it into a
number of homogeneous parts. This number may be finite
in some cases and infinite in others. The latter possibility,
which is only seldom considered in thermodymnamics, arises
when the properties of the system, or at least of some of its
parts, vary continuously from point to point. The state of
the system is then defined by giving the mass, the chemical
composition, the state of aggregation, the pressure, the
volume, and the temperature of each homogeneous part.

It is obvious that these variables are not all independent.
Thus, for example, the sum of the amounts of each chemical
element present in the different homogeneous parts must be
constant and equal to the total amount of that element
present in the systemm. Moreover, the volume, the pressure,
and the temperature of each homogeneous part having a
given mass and chemical composition are connected by an
equation of state.

A system contarning moving parts. In almost every
system that is dealt with in thermodynamics, one assumes
that the different parts of the system either are at rest or are
moving so slowly that their kinetic energies may be neg-
lected. If this is not the case, one must also specify the
velocities of the various parts of the system in order to
define the state of the system completely.

It is evident from what we have said that the knowledge
of the thermodynamical state alone is by no means sufficient
for the determination of the dynamical state. Studying the
thermodynamical state of a homogencous fluid of given
volume at a given temperature (the pressure is then defined
by the equation of state), we observe that there is an infinite
number of states of molecular motion that correspond to it.
With increasing time, the system exists successively in all
these dynamical states that correspond to the given thermo-
dynamical state. From this point of view we may say
that a thermodynamical state is the ensemble of all the
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dynamical states through which, as a result of the molecular
motion, the system is rapidly passing. This definition of
state is rather abstract and not quite unique; therefore,
we shall indicate in each particular case what the state
variables are.

Particularly important among the thermodynamical
states of a system are the states of equilitbrium . These
states have the property of not varying so long as the
external conditions remain unchanged. Thus, for instance,
a gas enclosed in a container of constant volume is in
equilibrium when its pressure is constant throughout and
its temperature is equal to that of the environment.

Very often we shall have to consider {ransformations of a
system from an initial state to a final state through a
continuous succession of intermediate states. If the state
of the system can be represented on a (V, p) diagram, such a
transformation will be represented by a curve connecting
the two points that represent the initial and final states.

A transformation is said to be reversible when the succes-
sive states of the transformation differ by infinitesimals from
equzlibrium states. A reversible transformation can there-
fore connect only those initial and final states which are
states of equilibrium. A reversible transformation can be
realized in practice by changing the external conditions so
slowly that the system has time to adjust itself gradually
to the altered conditions. For example, we can produce a
reversible expansion of a gas by enclosing it in a cylinder
with a movable piston and shifting the piston outward very
slowly. If we were to shift the piston rapidly, currents
would be set up in the expanding gaseous mass, and the
intermediate states would no longer be states of equilibrium.

If we transform a system reversibly from an initial state 4
to a final state B, we can then take the system by means of
the reverse transformation from B to A through the same
succession of intermediate states but in the reverse order.
To do this, we need simply change the conditions of the
environment very slowly in a sense opposite to that in the
original transformation. Thus, in the case of the gas
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discussed in the preceding paragraph, we may compress it
again to its original volume and bring it back to its initial
state by shifting the piston inward very slowly. The
compression occurs reversibly, and the gas passes through
the same intermediate states as it did during the expansion.

During a transformation, the system can perform positive
or negative external worlk; that is, the system can do work
on its surroundings or the surroundings can do work on the
system. As an example of this, we consider a body enclosed
in a cylinder having a movable piston of area S at one
end (Figure 1). If p is the pressure of the body against the
walls of the cylinder, then pS is the force
exerted by the body on the piston. If the
piston is shifted an infinitesimal distance dh, | _____|______
an infinitesimal amount of work, dh

)
dL = pSdh, 2)

is performed, since the displacement is paral-
lel to the force. But Sdh isequal to the in- F
crease,dV, in volume of the system. Thus,
we may write!:

dL = pdV. (3) Fig. 1.

1 It is obvious that (3) is generally valid no matter what the shape of
the container may be. Consider a body at the uniform pressure p, enclosed
in an irregularly shaped container A (Figure 2). Consider now an infini-
tesimal transformation of our system during which the walls of the con-
tainer move from the initial position A to the final position B, thus permit-
ting the body inside the container to expand. Let do be a surface element
of the container, and let dn be the displacement of this element in the
direction normal to the surface of the container. The work performed on
the surface element do by the pressure p during the displacement of the
container from the situation A to the situation B is obviously p do dn.
The total amount of work performed during the infinitesimal transforma-
tion is obtained by integrating the above expression over all the surface o of
the container; since p is a constant, we obtain:

dL=pfda~dn.

It is now evident from the figure that the variation dV of the volume of the
container is given by the surface integral,

dV=fdadn.

Comparing these two equations, we obtain (3).
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For a finite transformation, the work done by the system
is obtained by integrating equation (3):

B
L = [ pdV, (@)
A

where the integral is taken over the entire transformation.
When the state of the system can be represented on a
(V, p) diagram, the work
’- performed during a trans-
formation has a simple
geometrical representa-
tion. Wae consider a trans-
formation from an initial
B state indicated by the point
A to a final state indicated
by the point B (Figure 3).
This transformation will be
Fig. 2. represented by a curve con-

necting A and B the shape
of which depends on the type o

of transformation considered.
The work done during this
transformation is given by the 5
integral

| 29N A

L= f pdV, ()
where V, and Vs are the vol- //
Va

umes corresponding to the
states A and B. This integral,
and hence the work done, can Fig. 3.

be represented geometrically by the shaded area in the
figure.

Transformations which are especially important are those
for which the initial and final states are the same. These are
called cyclical transformations or cycles. A cycle, therefore,
is a transformation which brings the system back to its
initial state. If the state of the system can be represented
on a (V, p) diagram, then a cycle can be represented on

/1
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this diagram by a closed curve, such as the curve ABCD
(Figure 4).

The work, L, performed by the system during the cyclical
transformation is given geometrically by the area enclosed
by the curve representing the cycle. Let A and C be the
points of minimum and maximum abscissa of our cycle,
and let their projections on the V-axis be A’ and C’, re-
spectively. The work performed during the part ABC of the
transformation is positive and equal to the area ABCC’A’A.
The work performed during the rest of the transforma-
tion, CDA, is negative and equal in amount to the area
CC’'A’ADC. The total amount of positive work done is
equal to the difference between these two areas, and hence is
equal to the area bounded by the cycle.

It should be noted that the total p
work done is positive because we
performed the cycle in a clockwise
direction. If the same cycle is per-
formed in a counterclockwise direc-
tion, the work will again be given
by the area bounded by the cycle,
but this time it will be negative.

A transformation during which
the system performs no external Fig. 4.
work 1is called an <Zsochore transformation. If we assume
that the work dL performed during an infinitesimal
element of the transformation is given, according to equa-
tion (3), by pdV, we find for an isochore transformation
dV = 0, or, by integration, V = a constant. Thus, an
isochore transformation in this case is a transformation at
constant volume. This fact justifies the name <sochore.
It should be noticed, however, that the concept of isochore
transformation is more general, since it requires that d. = 0O
for the given transformation, even when the work dZ cannot
be represented by equation (3).

Transformations during which the pressure or the tem-
perature of the system remains constant are called zsobarzc
and zsothermal transformations, respectively.

b
Qm
R

N

() S

>
N
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2. Ideal or perfect gases. The equation of state of a
systemm composed of a certain quantity of gas occupying
a volume V at the temperature ¢ and pressure p can be
approximately expressed by a very simple analytical law.
We obtain the equation of state of a gas in its simplest
form by changing from the empirical scale of temperatures,
t, used so far to a new temperature scale 7.

We define T provisionally as the temperature indicated
by a gas thermometer in which the thermometric gas is kept
at a very low constant pressure. 7 is then taken propor-
tional to the volume occupied by the gas. It is well known
that the readings of different gas thermometers under these
conditions are largely independent of the nature of the
thermometric gas, provided that this gas is far enough from
condensation. We shall see later, however (section 9),
that it is possible to define this same scale of temperatures T'
by general thermodynamic considerations quite independ-
ently of the special properties of gases.

The temperature 7' is called the absolute temperaiure.
Its unit is usually chosen in such a way that the temperature
difference between the boiling and the freezing points of
water at one atmosphere of pressure is equal to 100. The
freezing point of water corresponds then, as is well known,
to the absolute temperature 273.1.

The equation of state of a system composed of m grams
of a gas whose molecular weight is M is given approximately

by:

m
pV = T RT. (6)
R is a universal constant (that is, it has the same value for all
gases: B = 8.314 X 107 erg/degrees, or (see section 3)
R = 1.986 cal/degrees). KEquation (6) is called the equation
of state of an ideal or a perfect gas; it includes the laws of
Boyle, Gay-Lussac, and Avogadro.
No real gas obeys equation (6) exactly. An ideal sub-
stance that obeys equation (6) exactly is called an ideal
or a perfect gas.
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For a gram-molecule (or mole) of a gas (that is, for a
number of grams of a gas equal numerically to its molecular
weight), we have m = M, so that (6) reduces to:

pV = RT. 7)

From (6) or (7) we can obtain the density p of the gas in
terms of the pressure and the temperature:

_m _ Mp ‘
P=v=RT (®)
For an isothermal transformation of an ideal gas (trans-
formation at constant temperature), we have:

pV = constant.

On the (V, p) diagram the isothermal transformations of an
ideal gas are thus represented by equilateral hyperbolas
having the V- and p-axes as asymptotes.

We can easily calculate the work performed by the gas
during an isothermal expansion from an initial volume V,
to a final volume V.. This is given (making use of (5) and

(6)) by:
Ve m vz v

_ ™y Ve
= 3 RT log V.
_m P
= 47 BT log o (9)
where p, and p, are the initial and final pressures, respec-
tively. For one mole of gas, we have:

L = RT log V. = RT log P (10)

1 P2

A mixture of several gases is governed by laws very similar
to those which arec obeyed by a chemically homogeneous
gas. We shall call the partial pressure of a component of a
mixture of gases the pressure which this component would
exert if it alone filled the volume occupied by the mixture
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at the same temperature as that of the mixture. We can
now state Dalton’s law for gas mixtures in the following

form:

The pressure exerted by a mizture of gases s equal to the
sum of the partial pressures of oll the components present
in the mizture.

This law is only approximately obeyed by real gases, but
it is assumed to hold exactly for ideal gases.

Problems

1. Calculate the work performed by a body expanding from an
initial volume of 3.12 liters to a final volume of 4.01 liters at the
pressure of 2.34 atmospheres.

2. Calculate the pressure of 30 grams of hydrogen inside a
container of 1 cubic meter at the temperature of 18°C.

3. Calculate the density and specific volume of nitrogen at the
temperature of 0°C.

4. Calculate the work performed by 10 grams of oxygen
expanding isothermally at 20°C from 1 to .3 atmospheres of
pressure.



